This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

Synthesis, crystal structure and magnetic properties of 2D bi-layered coordination polymer

Zhengbo Han^a; Juan Li^b; Jingqun Gao^a

^a School of Chemical Science and Engineering, Liaoning University, Shenyang 110036, P.R. China ^b School of Public Health, Jilin University, Changchun 130021, P.R. China

To cite this Article Han, Zhengbo , Li, Juan and Gao, Jingqun(2006) 'Synthesis, crystal structure and magnetic properties of 2D bi-layered coordination polymer', Journal of Coordination Chemistry, 59: 14, 1641 – 1647 To link to this Article: DOI: 10.1080/00958970500537887 URL: http://dx.doi.org/10.1080/00958970500537887

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Synthesis, crystal structure and magnetic properties of 2D bi-layered coordination polymer

ZHENGBO HAN*†, JUAN LI‡ and JINGQUN GAO†

 †School of Chemical Science and Engineering, Liaoning University, Shenyang 110036, P.R. China
 ‡School of Public Health, Jilin University, Changchun 130021, P.R. China

(Received 3 November 2005; in final form 4 November 2005)

A new coordination polymer, $[Ni(pydc)(H_2O)_2] \cdot H_2O$ (1) $(H_2pydc = pyridine-3,4-dicarboxylic acid)$, have been synthesized by treating Ni(II) nitrate with 3,4-pyridinedicarboxylic acid under hydrothermal conditions. The single-crystal X-ray structure reveals that 1 is a 2D bi-layered coordination polymer. Single-crystals are triclinic, space group $P\overline{1}$, with a = 7.065(3), b = 7.812(4), c = 9.031(4)Å, $\alpha = 75.568(8)$, $\beta = 68.970(8)$, $\gamma = 75.927(8)^{\circ}$, V = 444.0(3)Å³, Z = 2. Variable temperature magnetic susceptibility measurements demonstrate a ferromagnetic interaction in 1.

Keywords: Nickel; Pyridine-3,4-dicarboxylic acid; Crystal structure; Coordination polymer; Magnetic properties

1. Introduction

The design and construction of coordination polymers, a rapidly expanding field of crystal engineering [1], has attracted much attention due to their intriguing topologies [2] and potential applications as functional materials [3]. Many networks with various structural motifs, including honeycomb, brick wall, rectangular grid, bilayer, ladder, herringbone, diamondoid, and octahedral geometries [4–11], have been documented in the past decade. Polycarboxylate ligands exhibit various coordination modes to furnish various topologies [1b, 3c]. However, pyridine-3,4-dicarboxylic acid (H₂pydc) complexes have been little studied [12]. H₂pydc has several unique features with respect to *p*- and *m*-pyridine carboxylic acids. The two carboxyl groups are adjacent to each other and conjugation between pyridine and carboxyl groups is weak. Therefore, H₂pydc is likely to form high-dimensional frameworks with metal atoms [12a]. In this article, we reported the synthesis, crystal structure and magnetic properties of [Ni(pydc)(H₂O)₂] · H₂O (1).

^{*}Corresponding author. Email: ceshzb@lnu.edu.cn

2. Experimental

2.1. Materials and methods

All reagents and solvents employed were commercially available and used as received without further purification. C, H, and N microanalyses were carried out with a Perkin-Elmer 240 instrument analyzer. FT-IR spectra (KBr pellets) were recorded in the 4000–400 cm⁻¹ range on a Nicolet 5DX spectrophotometer. Variable-temperature magnetic susceptibility data were obtained using a Quantum Design MPMS-7SQUID magnetometer in the temperature range 2–300 K with an applied field of 10 kG.

2.2. Synthesis

A mixture of Ni(NO₃)₂ · 6H₂O (0.5 mmol), H₂pydc (0.5 mmol), NaOH (0.5 mmol) and H₂O (10 cm³) was placed in a 23 cm³ Teflon reactor and heated at 180°C for five days, then cooled to room temperature at a rate of 5 K h⁻¹. Green crystals of **1** were obtained in 80% yield. Anal. Calcd for C₇H₉NNiO₇ (%): C, 30.3; H, 3.3; N, 5.0. Found: C, 30.5; H, 3.1; N, 4.9. IR (cm⁻¹): 3293(vs), 1621(s), 1563(s), 1499(w), 1404(s).

2.3. X-ray crystallography

Single-crystal crystallographic data were collected at room temperature with a Bruker SMART Apex CCD area-detector diffractometer with graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å) using the ω scan mode. Data reduction and absorption corrections were performed with SAINT and SADABS software, respectively. The structure was solved by direct methods and refined on F^2 by full-matrix least-squares techniques using SHELXTL [13]. All non-hydrogen atoms were treated anisotropically. The positions of hydrogen atoms were generated geometrically. Crystallographic data and experimental details concerning the structure analysis are summarized in table 1. Selected bond lengths and angles are listed in table 2. The CCDC reference number for **1** is 244287.

3. Results and discussion

IR spectra of **1** show the absence of strong peaks around 1720 cm^{-1} , indicating that all carboxylic groups are deprotonated [14], consistent with the results of the X-ray analysis. Complex **1** is triclinic with one formula unit per asymmetric unit. The Ni(II) ion has octahedral geometry {NiNO₅}, being coordinated by four different pydc ligands (Ni1–O4 2.014(3) Ni1–N1A 2.063(3), Ni1–O1B Ni1–O1B 2.107(3), Ni1–O2C 2.183(3)Å) and two water molecules (Ni1–O1W 2.043(3), Ni1–O2W 2.083(3)Å) (figure 1a). Coordination modes of the pydc ligand in **1** are shown in figure 1(b). Each pydc ligand bonds to four Ni(II) ions, of which the pyridyl nitrogen atom and two *syn*-carboxylate oxygen atoms connect three Ni(II) centres to form a monolayer structure (figure 2a). One carboxylate group coordinates to Ni(II) through a single

Empirical formula C ₇ H ₉ NNiO ₇ Formula weight 277.86 Wavelength (Å) 0.70173 Crystal system Triclinic Space group PI Unit cell dimensions (Å, °) 7.065(3) a 7.065(3) b 7.812(4) c 9.031(4) α 75.568(8) β 68.970(8) Y 75.927(8) V (Å ³) 2444.0(3) Z 2 D _c (g cm ⁻³) 2.079 μ (mm ⁻¹) 2.21 F(000) 284 Crystal size (mm ³) 0.04 × 0.04 × 0.01 θ range for data collection (°) 2.46–28.26 Reflections collected 2726 Independent reflections (R_{int}) 1925 (0.0173) Max., min. transmission 0.974, 0.915 T (K) 293(2) Data/restraints/parameters 1716/0/145 Final R indices [I > 2σ(I)] ^a $R_1 = 0.0480$ wR ₂ = 0.1115 $R_1 = 0.0480$ wR ₂ = 0.1149 0.722, -0.808 ^a R ₁ = $\sum F_o - F_c /\sum F_o ; wR_$		
Formula weight 277.86 Wavelength (Å) 0.70173 Crystal system Triclinic Space group P_1 Unit cell dimensions (Å, °) a a 7.065(3) b 7.812(4) c 9.031(4) α 75.568(8) β 68.970(8) γ 75.927(8) V (Å ³) 2444.0(3) Z 2 D_c (g cm ⁻³) 2.079 μ (mm ⁻¹) 2.21 $F(000)$ 284 Crystal size (mm ³) 0.04 × 0.04 × 0.01 θ range for data collection (°) 2.46–28.26 Reflections collected 2726 Independent reflections (R_{int}) 1925 (0.0173) Max., min. transmission 0.974, 0.915 T (K) 293(2) Data/restraints/parameters 1716/0/145 Final R indices ($I = 2\sigma(I)$] ^a $R_1 = 0.0421$ $wR_2 = 0.1115$ $R_1 = 0.0480$ $wR_2 = 0.1149$ 0.722, -0.808	Empirical formula	C7H9NNiO7
Wavelength (Å) 0.70173 Crystal system Triclinic Space group $P\overline{1}$ Unit cell dimensions (Å, °) a a 7.065(3) b 7.812(4) c 9.031(4) α 75.568(8) β 68.970(8) γ 75.927(8) V (Å ³) 444.0(3) Z 2 D_c (g cm ⁻³) 2.079 μ (mm ⁻¹) 2.21 $F(000)$ 284 Crystal size (mm ³) 0.04 × 0.04 × 0.01 θ range for data collection (°) 2.46–28.26 Reflections collected 2726 Independent reflections (R_{int}) 1925 (0.0173) Max., min. transmission 0.974, 0.915 T (K) 293(2) Data/restraints/parameters 1716/0/145 Final R indices [$I > 2\sigma(I)$] ^a $R_1 = 0.0421$ $wR_2 = 0.1115$ $wR_2 = 0.1149$ Largest diff. peak and hole (e Å ⁻³) 0.722, -0.808 a $R_1 = \sum F_o - F_c / \sum F_o ; wR_2 = \sum [w(F_o^2 - F_o^2)^2] / \sum [w(F_o^2)^2]^{1/2}. $	Formula weight	277.86
Crystal system Triclinic Space group P1 Unit cell dimensions (Å, °) 7.065(3) a 7.065(3) b 7.812(4) c 9.031(4) α 75.568(8) β 68.970(8) γ 75.927(8) V (Å ³) 444.0(3) Z 2 D _c (g cm ⁻³) 2.079 μ (mm ⁻¹) 2.21 F(000) 284 Crystal size (mm ³) 0.04 × 0.04 × 0.01 θ range for data collection (°) 2.46–28.26 Reflections collected 2726 Independent reflections (R _{int}) 1925 (0.0173) Max., min. transmission 0.974, 0.915 T (K) 293(2) Data/restraints/parameters 1716/0/145 Final R indices [I > 2σ(I)] ^a $R_1 = 0.0421$ wR ₂ = 0.1115 $R_1 = 0.0480$ wR ₂ = 0.1149 0.722, -0.808 ^a R ₁ = $\sum F_o - F_c / \sum F_o ; wR_2 = \sum [w(F_o^2 - F_o^2)^2] / \sum [w(F_o^2)^2]^{1/2}. $	Wavelength (Å)	0.70173
Space group $P\bar{1}$ Unit cell dimensions (Å, °) 7.065(3) a 7.065(3) b 7.812(4) c 9.031(4) α 75.568(8) β 68.970(8) γ 75.927(8) V (Å ³) 444.0(3) Z 2 D_c (g cm ⁻³) 2.079 μ (mm ⁻¹) 2.21 $F(000)$ 284 Crystal size (mm ³) 0.04 × 0.04 × 0.01 θ range for data collection (°) 2.46–28.26 Reflections collected 2726 Independent reflections (R_{int}) 1925 (0.0173) Max., min. transmission 0.974, 0.915 T (K) 293(2) Data/restraints/parameters 1716/0/145 Final R indices [$I > 2\sigma(I)$] ^a $R_1 = 0.0421$ $wR_2 = 0.1115$ $wR_2 = 0.1149$ Largest diff. peak and hole (e Å ⁻³) 0.722, -0.808 a $R_1 = \sum F_o - F_c / \sum F_o ; wR_2 = \sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0^2)^2]^{1/2}. $	Crystal system	Triclinic
Unit cell dimensions (Å, °) <i>a</i> 7.065(3) <i>b</i> 7.812(4) <i>c</i> 9.031(4) <i>a</i> 75.568(8) <i>β</i> 68.970(8) <i>Y</i> 75.927(8) <i>V</i> (Å ³) 444.0(3) <i>Z</i> 2 <i>D_c</i> (g cm ⁻³) 2.079 <i>μ</i> (mm ⁻¹) 2.21 <i>F</i> (000) 284 Crystal size (mm ³) 0.04 × 0.04 × 0.01 <i>θ</i> range for data collection (°) 2.46–28.26 Reflections collected 2726 Independent reflections (R_{int}) 1925 (0.0173) Max., min. transmission 0.974, 0.915 <i>T</i> (<i>K</i>) 293(2) Data/restraints/parameters 1716/0/145 Final <i>R</i> indices [$I > 2\sigma(I)$] ^a $R_1 = 0.0421$ <i>wR</i> ₂ = 0.1115 <i>R</i> indices (all data) $R_1 = 0.0480$ <i>wR</i> ₂ = 0.1149 Largest diff. peak and hole (e Å ⁻³) 0.722, -0.808 $aR_1 = \sum F_o - F_c /\sum F_o ; wR2 = \sum [w(F_0^2 - F_0^2)^2]/\sum [w(F_0^2)^2]^{1/2}.$	Space group	PĪ
a 7.065(3) b 7.812(4) c 9.031(4) α 75.568(8) β 68.970(8) γ 75.927(8) V (Å ³) 444.0(3) Z 2 D_c (g cm ⁻³) 2.079 μ (mm ⁻¹) 2.21 $F(000)$ 284 Crystal size (mm ³) 0.04 × 0.04 × 0.01 θ range for data collection (°) 2.46-28.26 Reflections collected 2726 Independent reflections (R_{int}) 1925 (0.0173) Max., min. transmission 0.974, 0.915 T (K) 293(2) Data/restraints/parameters 1716/0/145 Final R indices [$I \ge 2\sigma(I)$] ^a $R_1 = 0.0421$ $wR_2 = 0.1115$ $wR_2 = 0.1115$ R indices (all data) $wR_2 = 0.1149$ Largest diff. peak and hole (e Å ⁻³) 0.722, -0.808 a $R_1 = \sum F_o - F_c / \sum F_o ; wR_2 = \sum [w(F_o^2 - F_o^2)^2] / \sum [w(F_o^2)^2]^{1/2}. $	Unit cell dimensions (Å, °)	
$ \begin{array}{c} b & 7.812(4) \\ c & 9.031(4) \\ \alpha & 75.568(8) \\ \beta & 68.970(8) \\ \gamma & 75.927(8) \\ V (Å^3) & 444.0(3) \\ Z & 2 \\ D_c (g cm^{-3}) & 2.079 \\ \mu (mm^{-1}) & 2.21 \\ F(000) & 284 \\ Crystal size (mm^3) & 0.04 \times 0.04 \times 0.01 \\ \theta \ range \ for \ data \ collection (°) & 2.46-28.26 \\ Reflections \ collected & 2726 \\ Independent \ reflections (R_{int}) & 1925 (0.0173) \\ Max., min. \ transmission & 0.974, 0.915 \\ T (K) & 293(2) \\ Data/restraints/parameters & 1716/0/145 \\ Final R \ indices \ [I > 2\sigma(I)]^a & R_1 = 0.0421 \\ wR_2 = 0.1115 \\ R \ indices \ (all \ data) & wR_2 = 0.1149 \\ Largest \ diff. \ peak \ and \ hole \ (e \ Å^{-3}) & 0.722, -0.808 \\ \end{array} $	а	7.065(3)
$\begin{array}{cccc} & 9.031(4) \\ \alpha & 75.568(8) \\ \beta & 68.970(8) \\ \gamma & 75.927(8) \\ V (Å^3) & 444.0(3) \\ Z & 2 \\ D_c (g cm^{-3}) & 2.079 \\ \mu (mm^{-1}) & 2.21 \\ F(000) & 284 \\ Crystal size (mm^3) & 0.04 \times 0.04 \times 0.01 \\ \theta \text{ range for data collection (°)} & 2.46-28.26 \\ Reflections collected & 2726 \\ Independent reflections (R_{int}) & 1925 (0.0173) \\ Max., min. transmission & 0.974, 0.915 \\ T (K) & 293(2) \\ Data/restraints/parameters & 1716/0/145 \\ Final R indices [I > 2\sigma(I)]^a & R_1 = 0.0421 \\ wR_2 = 0.1115 \\ R indices (all data) & R_1 = 0.0480 \\ wR_2 = 0.1149 \\ Largest diff. peak and hole (e Å^{-3}) & 0.722, -0.808 \\ \hline \end{array}$	b	7.812(4)
$\begin{array}{lll} \alpha & 75.568(8) \\ \beta & 68.970(8) \\ \gamma & 75.927(8) \\ V (Å^3) & 444.0(3) \\ Z & 2 \\ D_c (g cm^{-3}) & 2.079 \\ \mu (mm^{-1}) & 2.21 \\ F(000) & 284 \\ Crystal size (mm^3) & 0.04 \times 0.04 \times 0.01 \\ \theta \ range \ for \ data \ collection \ (^\circ) & 2.46-28.26 \\ Reflections \ collected & 2726 \\ Independent \ reflections \ (R_{int}) & 1925 \ (0.0173) \\ Max., \ min. \ transmission & 0.974, \ 0.915 \\ T \ (K) & 293(2) \\ Data/restraints/parameters & 1716/0/145 \\ Final \ R \ indices \ [I > 2\sigma(I)]^a & R_1 = 0.0421 \\ & wR_2 = 0.1115 \\ R \ indices \ (all \ data) & wR_2 = 0.1149 \\ Largest \ diff. \ peak \ and \ hole \ (e \ A^{-3}) & 0.722, \ -0.808 \\ \end{array}$	С	9.031(4)
β 68.970(8) γ 75.927(8) V (Å ³) 444.0(3) Z 2 D _c (g cm ⁻³) 2.079 μ (mm ⁻¹) 2.21 F(000) 284 Crystal size (mm ³) 0.04 × 0.04 × 0.01 θ range for data collection (°) 2.46–28.26 Reflections collected 2726 Independent reflections (R _{int}) 1925 (0.0173) Max., min. transmission 0.974, 0.915 T (K) 293(2) Data/restraints/parameters 1716/0/145 Final R indices [I > 2σ(I)] ^a R ₁ = 0.0421 wR ₂ = 0.1115 R R indices (all data) wR ₂ = 0.1149 Largest diff. peak and hole (e Å ⁻³) 0.722, -0.808 ^a R ₁ = ∑ F _o - F _c /∑ F _o ; wR ₂ = ∑[w(F ₀ ² - F ₀ ²) ²]/∑[w(F ₀ ²) ²] ^{1/2} .	α	75.568(8)
γ 75.927(8) V (Å ³) 444.0(3) Z 2 D_c (g cm ⁻³) 2.079 μ (mm ⁻¹) 2.21 $F(000)$ 284 Crystal size (mm ³) 0.04 × 0.04 × 0.01 θ range for data collection (°) 2.46–28.26 Reflections collected 2726 Independent reflections (R_{int}) 1925 (0.0173) Max., min. transmission 0.974, 0.915 T (K) 293(2) Data/restraints/parameters 1716/0/145 Final R indices [$I > 2\sigma(I)$] ^a $R_1 = 0.0421$ $wR_2 = 0.1115$ $wR_2 = 0.1149$ Largest diff. peak and hole (e Å ⁻³) 0.722, -0.808 ^a $R_1 = \sum F_o - F_c / \sum F_o ; wR_2 = \sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0^2)^2]^{1/2}. $	β	68.970(8)
$V(Å^3)$ 444.0(3) Z 2 $D_c (g cm^{-3})$ 2.079 $\mu (mm^{-1})$ 2.21 $F(000)$ 284 Crystal size (mm ³) 0.04 × 0.04 × 0.01 θ range for data collection (°) 2.46–28.26 Reflections collected 2726 Independent reflections (R_{int}) 1925 (0.0173) Max., min. transmission 0.974, 0.915 $T (K)$ 293(2) Data/restraints/parameters 1716/0/145 Final R indices [$I > 2\sigma(I)$] ^a $R_1 = 0.0421$ $wR_2 = 0.1115$ $wR_2 = 0.1115$ R indices (all data) $wR_2 = 0.1149$ Largest diff. peak and hole (e Å ⁻³) 0.722, -0.808 $aR_1 = \sum F_o - F_c / \sum F_o ; wR_2 = \sum [w(F_o^2 - F_o^2)^2] / \sum [w(F_o^2)^2]^{1/2}. $	γ.	75.927(8)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$V(A^3)$	444.0(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Z	2
$\begin{array}{lll} \mu \ (mm^{-1}) & 2.21 \\ F(000) & 284 \\ Crystal size \ (mm^3) & 0.04 \times 0.04 \times 0.01 \\ \theta \ range \ for \ data \ collection \ (^\circ) & 2.46-28.26 \\ Reflections \ collected & 2726 \\ Independent \ reflections \ (R_{int}) & 1925 \ (0.0173) \\ Max., \ min. \ transmission & 0.974, \ 0.915 \\ T \ (K) & 293(2) \\ Data/restraints/parameters & 1716/0/145 \\ Final \ R \ indices \ [I > 2\sigma(I)]^a & R_1 = 0.0421 \\ wR_2 = 0.1115 \\ R \ indices \ (all \ data) & wR_2 = 0.1115 \\ R \ indices \ (all \ data) & wR_2 = 0.1149 \\ Largest \ diff. \ peak \ and \ hole \ (e \ Å^{-3}) & 0.722, \ -0.808 \end{array}$	$D_{\rm c} ({\rm gcm^{-3}})$	2.079
$F(000)$ 284 Crystal size (mm ³) $0.04 \times 0.04 \times 0.01$ θ range for data collection (°) $2.46-28.26$ Reflections collected 2726 Independent reflections (R_{int}) 1925 (0.0173) Max., min. transmission 0.974 , 0.915 T (K) 293(2) Data/restraints/parameters 1716/0/145 Final R indices [$I > 2\sigma(I)$] ^a $R_1 = 0.0421$ $wR_2 = 0.1115$ $wR_2 = 0.1115$ R indices (all data) $wR_2 = 0.1149$ Largest diff. peak and hole ($e Å^{-3}$) 0.722 , -0.808 $a R_1 = \sum F_o - F_c / \sum F_o $; $wR_2 = \sum [w(F_o^2 - F_o^2)^2] / \sum [w(F_o^2)^2]^{1/2}$.	$\mu (\mathrm{mm}^{-1})$	2.21
Crystal size (mm ³) $0.04 \times 0.04 \times 0.01$ θ range for data collection (°) $2.46-28.26$ Reflections collected 2726 Independent reflections (R_{int}) 1925 (0.0173) Max., min. transmission 0.974 , 0.915 T (K) $293(2)$ Data/restraints/parameters $1716/0/145$ Final R indices [$I > 2\sigma(I)$] ^a $R_1 = 0.0421$ $wR_2 = 0.1115$ $wR_2 = 0.1149$ Largest diff. peak and hole (e Å ⁻³) 0.722 , -0.808 ^a $R_1 = \sum F_o - F_c / \sum F_o $; $wR_2 = \sum [w(F_o^2 - F_o^2)^2] / \sum [w(F_o^2)^2]^{1/2}$.	F(000)	284
θ range for data collection (°) 2.46-28.26 Reflections collected 2726 Independent reflections (Rint) 1925 (0.0173) Max., min. transmission 0.974, 0.915 T (K) 293(2) Data/restraints/parameters 1716/0/145 Final R indices [I ≥ 2σ(I)]a R1 = 0.0421 wR2 = 0.1115 R indices (all data) R1 = 0.0480 wR2 = 0.1149 Largest diff. peak and hole (e Å-3) 0.722, -0.808 a R1 = ∑ Fo - Fc /∑ Fo ; wR2 = ∑[w(F02 - F02)2]/∑[w(F02)2]1/2.	Crystal size (mm ³)	$0.04 \times 0.04 \times 0.01$
Reflections collected 2726 Independent reflections (R_{int}) 1925 (0.0173) Max., min. transmission 0.974, 0.915 T (K) 293(2) Data/restraints/parameters 1716/0/145 Final R indices [$I > 2\sigma(I)$] ^a $R_1 = 0.0421$ $wR_2 = 0.1115$ $wR_2 = 0.1115$ R indices (all data) $wR_2 = 0.1149$ Largest diff. peak and hole ($e Å^{-3}$) 0.722, -0.808 ^a $R_1 = \sum F_o - F_c / \sum F_o ; wR_2 = \sum [w(F_o^2 - F_o^2)^2] / \sum [w(F_o^2)^2]^{1/2}.$	θ range for data collection (°)	2.46-28.26
Independent reflections (R_{int}) 1925 (0.0173) Max., min. transmission 0.974, 0.915 T (K) 293(2) Data/restraints/parameters 1716/0/145 Final R indices $[I > 2\sigma(I)]^a$ $R_1 = 0.0421$ $wR_2 = 0.1115$ $wR_2 = 0.1115$ R indices (all data) $wR_2 = 0.1149$ Largest diff. peak and hole (e Å ⁻³) 0.722, -0.808 $^a R_1 = \sum F_o - F_c / \sum F_o ; wR_2 = \sum [w(F_o^2 - F_o^2)^2] / \sum [w(F_o^2)^2]^{1/2}.$	Reflections collected	2726
Max., min. transmission 0.974, 0.915 T (K) 293(2) Data/restraints/parameters 1716/0/145 Final R indices $[I > 2\sigma(I)]^a$ $R_1 = 0.0421$ wR_2 = 0.1115 $wR_2 = 0.1115$ R indices (all data) $wR_2 = 0.1149$ Largest diff. peak and hole (e Å ⁻³) 0.722, -0.808 $^a R_1 = \sum F_o - F_c / \sum F_o ; wR_2 = \sum [w(F_o^2 - F_o^2)^2] / \sum [w(F_o^2)^2]^{1/2}.$	Independent reflections (R_{int})	1925 (0.0173)
T (K) 293(2) Data/restraints/parameters 1716/0/145 Final R indices $[I > 2\sigma(I)]^a$ $R_1 = 0.0421$ wR_2 = 0.1115 $wR_2 = 0.1115$ R indices (all data) $wR_2 = 0.1149$ Largest diff. peak and hole (e Å ⁻³) 0.722, -0.808 $^a R_1 = \sum F_o - F_c / \sum F_o ; wR_2 = \sum [w(F_o^2 - F_o^2)^2] / \sum [w(F_o^2)^2]^{1/2}.$	Max., min. transmission	0.974, 0.915
Data/restraints/parameters 1716/0/145 Final R indices $[I > 2\sigma(I)]^a$ $R_1 = 0.0421$ wR_2 = 0.1115 $wR_2 = 0.1115$ R indices (all data) $wR_2 = 0.1149$ Largest diff. peak and hole (e Å ⁻³) 0.722, -0.808 $aR_1 = \sum F_o - F_c / \sum F_o ; wR_2 = \sum [w(F_o^2 - F_o^2)^2] / \sum [w(F_o^2)^2]^{1/2}.$	T(K)	293(2)
Final <i>R</i> indices $[I > 2\sigma(I)]^{a}$ <i>R</i> indices (all data) Largest diff. peak and hole (e Å ⁻³) $R_{1} = 0.0421$ $wR_{2} = 0.1115$ $wR_{2} = 0.1115$ $wR_{2} = 0.1149$ 0.722, -0.808 $R_{1} = \sum F_{o} - F_{c} / \sum F_{o} ; wR_{2} = \sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{o}^{2})^{2}]^{1/2}.$	Data/restraints/parameters	1716/0/145
$wR_2 = 0.1115$ <i>R</i> indices (all data) <i>karphi karphi karphi</i>	Final R indices $[I > 2\sigma(I)]^a$	$R_1 = 0.0421$
<i>R</i> indices (all data) <i>R</i> ₁ = $\overline{0.0480}$ <i>wR</i> ₂ = 0.1149 Largest diff. peak and hole (eÅ ⁻³) 0.722, -0.808 <i>R</i> ₁ = $\sum F_0 - F_c / \sum F_0 ; wR_2 = \sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0^2)^2]^{1/2}.$		$wR_2 = 0.1115$
Largest diff. peak and hole (e Å ⁻³) $wR_2 = 0.1149$ 0.722, -0.808 $R_1 = \sum F_0 - F_c / \sum F_0 ; wR_2 = \sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0^2)^2]^{1/2}.$	<i>R</i> indices (all data)	$R_1 = 0.0480$
Largest diff. peak and hole (e Å ⁻³) 0.722, -0.808 ^a $R_1 = \sum F_0 - F_c / \sum F_0 ; wR_2 = \sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0^2)^2]^{1/2}.$		$wR_2 = 0.1149$
^a $R_1 = \sum F_0 - F_c / \sum F_0 ; \ wR_2 = \sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0^2)^2]^{1/2}.$	Largest diff. peak and hole $(e \text{ Å}^{-3})$	0.722, -0.808

Table 1. Crystallographic data for 1.

Table 2. Selected bond distances (Å) and angles (°) for 1.

Ni(1)-O(4)	2.014(3)	Ni(1)-O(1W)	2.043(3)
Ni(1) - N(1A)	2.063(3)	Ni(1)-O(2W)	2.083(3)
Ni(1)–O(1B)	2.107(3)	Ni(1)-O(2C)	2.183(3)
O(4)–Ni(1)–O(1W)	94.46(12)	O(4)-Ni(1)-N(1A)	97.01(13)
O(1W) - Ni(1) - N(1A)	93.12(12)	O(4)-Ni(1)-O(2W)	170.30(11)
O(1W)–Ni(1)–O(2W)	92.41(12)	N(1A)-Ni(1)-(2W)	89.43(12)
O(4) - Ni(1) - O(1B)	86.04(12)	O(1W)-Ni(1)-O(1B)	86.63(11)
N(1A)-Ni(1)-O(1B)	176.95(11)	O(4)-Ni(1)-O(2C)	88.25(11)

Symmetry transformations used to generate equivalent atoms are A: x + 1, y, z; B: x, y + 1, z; C: -x + 1, -y, -z + 1.

atom, and the other acts as a non-coplanar *syn–anti* O,O'-bridge connecting two Ni(II) centres; this results in a bilayered structure (figure 2b). The Ni \cdots Ni distance in the Ni(OCO)Ni dimer present between two different monolayers is 4.664(3)Å while the shortest Ni \cdots Ni distance in the monolayer is 7.065(3)Å (though pydc bridges).

Strong intermolecular hydrogen bonds exist between hydrogen atoms of the lattice water molecule and nearby carboxylate groups $(O1W \cdots O3W = 2.813(2) \text{ Å},$ $\angle O1W - H \cdots O3W = 101.8(1)^{\circ}, O2W \cdots O3W 2.785(2) \text{ Å},$ $\angle O2W - H \cdots O3W = 156.2(1)^{\circ}, O1W \cdots O3 = 2.784(2) \text{ Å},$ $\angle O1W - H \cdots O3 = 121.1(2)^{\circ}).$ These interactions stabilize the free carboxylate groups in the structure.

(a)

(b)

Figure 1. (a) Structure of 1 showing the atom numbering scheme; (b) the coordination modes of the pydc group.

Thermal variations of $\chi_m T$, and $1/\chi_m$ for 1 are shown in figure 3. The $\chi_m T$ value at room temperature is $1.28 \text{ cm}^3 \text{ K mol}^{-1}$ per Ni. Upon lowering the temperature, $\chi_m T$ gradually increases to $1.35 \text{ cm}^3 \text{ K mol}^{-1}$ at 16.0 K, showing a significant ferromagnetic interaction. Upon a further decrease of temperature, $\chi_m T$ decreases

Figure 2. (a) A monolayer of the structure of 1 in the *ab* plane; (b) the bi-layered structure of 1 along the *a* axis.

Figure 3. Thermal variation of $\chi_m {\it T}$ and χ_m^{-1} for 1.

quickly due to the presence of zero-field splitting. The magnetic susceptibility obeys the Curie–Weiss law above 40 K with a Weiss constant $\theta = 0.94$ K, and a Curie constant C = 1.26 cm³ K mol⁻¹, indicating significant ferromagnetic coupling between dimeric Ni(II) S = 1 spins through the *syn–anti* O,O'-bridges.

Supplementary material

Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: int code +44(1223)336-033; E-mail: deposit@ccdc.cam.ac.uk].

Acknowledgements

This work was granted financial support from the Program for Excellence in Liaoning University.

References

- (a) B. Moulton, M.J. Zaworotko. Chem. Rev., 101, 1629 (2001); (b) M. Eddaoudi, D.B. Moler, H. Li, B. Chen, T.M. Reineke, M. O'Keeffe, O.M. Yaghi. Acc. Chem. Res., 34, 319 (2001).
- [2] (a) M.L. Tong, X.M Chen, S.R. Batten. J. Am. Chem. Soc., 125, 16170 (2003); (b) J.P. Zhang, S.L. Zheng, X.C. Huang, X.M. Chen. Angew. Chem. Int. Ed., 43, 206 (2004); (c) X.H. Bu, M.L. Tong, H.C. Chang, S. Kitagawa, S.R. Batten. Angew. Chem. Int. Ed., 43, 192 (2004).
- [3] (a) J.S. Seo, D. Whang, H. Lee, S.I. Jun, J. Oh, Y.J. Jeon, K. Kim. *Nature*, 404, 982 (2000); (b) H. Li, M. Eddaoudi, M. O'Keeffe, O.M. Yaghi. *Nature*, 402, 276 (1999); (c) M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wochter, M. O'Keeffe, O.M. Yaghi. *Science*, 295, 469 (2002); (d) W. Lin, O.R. Evans, R.G. Xiong, Z. Wang. J. Am. Chem. Soc., 120, 13272 (1998); (e) J. Tao, M.L. Tong, J.X. Shi, X.M. Chen, S.W. Ng. J. Chem. Soc., Chem. Commun., 2043 (2000); (f) S.-L. Zheng, J.H. Yang, X.L. Yu, X.M. Chen, W.T. Wong. Inorg. Chem., 43, 830 (2004); (g) K. Barthelet, J. Marrot, D. Riou, G. Férey. Angew. Chem. Int. Ed., 41, 281 (2002); (h) K. Inoue, H. Imai, P.S. Ghalsasi, K. Kikuchi, M. Ohba, H. Okawa, J.V. Yakhmi. Angew. Chem. Int. Ed., 40, 4242 (2001).
- [4] (a) M. Hayashi, Y. Miyamoto, T. Inoue, N. Oguni. J. Chem. Soc., Chem. Commun., 1752 (1991);
 (b) G.B. Gardner, D. Venkataraman, J.S. Moore, S. Lee. Nature, 374, 792 (1995).
- [5] R.W. Gable, B.F. Hoskins, R. Robson. J. Chem. Soc., Chem. Commun., 1677 (1990).
- [6] (a) M. Fujita, Y.J. Kwon, S. Washizu, K. Ogura. J. Am. Chem. Soc., 116, 1151 (1994);
 (b) L.R. Macgillivray, R.H. Groeneman, J.L. Atwood. J. Am. Chem. Soc., 120, 2676 (1998).
- [7] (a) M. Kondo, T. Yoshitomi, K. Seki, H. Matsuzaka, S. Kitagawa. Angew. Chem. Int. Ed., 36, 1725 (1997); (b) K.N. Power, T.L. Hennigar, M.J. Zaworotko. New J. Chem., 177 (1998); (c) C.J. Kepert, M.J. Rosseinsky. J. Chem. Soc., Chem. Commun., 375 (1999); (d) Z.Y. Fu, X.T. Wu, J.C. Dai, L.M. Wu, C.P. Cui, S.M. Hu. J. Chem. Soc., Chem. Commun., 1856 (2001).
- [8] (a) P. Losier, M.J. Zaworotko. Angew. Chem. Int. Ed., 35, 2779 (1996); (b) T.L. Hennigar,
 D.C. MacQuarrie, P. Losier, R.D. Rogers, M.J. Zaworotko. Angew. Chem. Int. Ed., 36, 972 (1997).
- [9] M.A. Withersby, A.J. Blake, N.R. Champness, P.A. Cooke, P. Hubberstey, M. Schroder. New J. Chem., 23, 573 (1999).
- [10] (a) L. Carlucci, G. Ciani, D.M. Proserpio. A. Sironi, J. Chem. Soc., Chem. Commun., 2755 (1994);
 (b) O.M. Yaghi, H. Li. J. Am. Chem. Soc., 117, 10401 (1995).
- [11] (a) T. Soma, H. Yuge, T. Iwamoto. Angew. Chem. Int. Ed., 33, 1665 (1994); (b) S. Subramanian, M.J. Zaworotko. Angew. Chem. Int. Ed., 34, 2127 (1995).
- [12] (a) W. Chen, Q. Xue, C. Chen, H.M. Yuan, W. Xu, J.S. Chen, S.N. Wang, J. Chem. Soc., Dalton Trans., 28 (2003); (b) M.L. Tong, S. Kitagawa, H.C. Chang, M. Ohba. J. Chem. Soc., Chem. Commun., 418 (2004); (c) X.L. Wang, C. Qin, E.B. Wang, Y.G. Li, N. Hao, C.W. Hu, L. Xu. Inorg. Chem., 43, 1850 (2004); (d) X.L. Wang, C. Qin, E.-B. Wang, Y.G. Li, C.W. Hu, L. Xu. J. Chem.

Soc., Chem. Commun., 378 (2004); (e) Z.Y. Fu, S.M. Hu, J.C. Dai, J.J. Zhang, X.T. Wu. Eur. J. Inorg. Chem., 2670 (2003); (f) Z.B. Han, X.N. Cheng, X.F. Li, X.M. Chen. Z. Anorg. Allg. Chem., 631, 642 (2005).

- [13] (a) G.M. Sheldrick. SHELXL97, Program for Crystal Structure Solution, University of Göttingen, Germany (1997); (b) G.M. Sheldrick. SHELXS97, Program for Crystal Structure Refinement, University of Göttingen, Germany (1997); (c) G.M. Sheldrick. Acta Cryst., A46, 467 (1990).
- [14] (a) Q. Shi, R. Cao, D.F. Sun, M.C. Hong, Y.C. Liang. *Polyhedron*, 20, 3287 (2001); (b) Z.B. Han, X.N. Cheng, X.M. Chen. *Crystal Growth and Design*, 5, 695 (2005).